View Single Post
  #1  
Old 26th September 2018, 20:24
ALARIC England ALARIC is offline
Member
 
Join Date: Apr 2017
Location: Rutland
Posts: 29
Northern Star. Voyage 1

Northern Star’s Early Life. An Engineer’s view. Part 1.

There have been a number of accounts published, telling of the problems that beset Northern Star during its early life, but they have been incomplete or contained inaccuracies.
This is the story of the early voyages from the horse’s mouth, the horse being me, Junior Engineer ‘B’ (the lowest of the low, there was no Junior Engineer ‘C’).
I served my Apprenticeship with Shaw Savill, the final year being at Swan Hunters, Wallsend. When my time was up, I moved half a mile up the Tyne to Vickers Armstrong’s Walker Yard and stood by Northern Star during the final few weeks of fitting out.
I was very impressed by the company’s pride and joy, but my opinions started to change when the first dock trials of the main engines took place. I just could not believe how noisy the double reduction gears were, in their fabricated steel boxes. The noise was like a machine gun with the trigger permanently held down. As an Apprentice, I had sailed in Persic, and was later to sail in Corinthic and Athenic, all with single reduction gears housed in very old fashioned, massive cast iron boxes. The main engines and gears were so quiet on these ships that it was difficult to tell by ear whether they were stopped , running slow or even full ahead. Not so with Northern Star, it wasn’t necessary to consult the tacho to know how fast the engines were running, after a little experience you just listened. However, I expected that after a bit of ‘running in’ the noise would reduce. I was wrong, it never did, but it wasn’t as bad as some motorships I experienced later.
On 19th June 1962 the main engines started turning for real and we clattered our way down the Tyne, to go to sea for the first time. Although I had spent over a year on Tyneside, I had never sailed into or from the river. So when we were at the breakwaters I went up to the bunkering ports to have a look. I was somewhat surprised to find that we were leaving the river stern first! I never did hear a proper explanation as to why, but I had been with Shaw Savill long enough to know that this wasn’t normal. At this time Northern Star was still owned and operated by Vickers, perhaps they always did this?
With hindsight, starting its sea going life going backwards can be seen as entirely appropriate. Somehow, Northern Star never did get it right. If it could go wrong, it invariably did.
After clearing the Tyne, we sailed via the Pentland Firth and round to the Clyde for trials. These took place without any great drama, the speed runs on the measured mile off the Isle of Arran. One of the ship’s modern innovations was a new type of log, known as SAL, which had a read out in the Engine Room. The Engineers clustered around the instrument were disappointed with the maximum speed achieved. I can’t remember exactly what speed was reached, but it didn’t exceed 22 knots by much of a margin.
Another of the innovations was the new, compact design of boiler feed pumps by G&J Weirs of Cathcart. They had a single, central bearing lubricated by water tapped off the high pressure pump discharge.
Traditional turbo feed pumps had three, oil lubricated bearings. These pumps were very reliable, but big and expensive to make in comparison to the new design. After trials were completed, Northern Star anchored at Tail of the Bank, and Weirs sent a team down from Glasgow, and at least one of the new pumps was replaced. No problem! More about these pumps later.
On 10th July Northern Star sailed on schedule from Southampton on her maiden voyage. For the next year, the ship never managed to complete a whole voyage on schedule, in marked contrast to Southern Cross’s excellent timekeeping record. The staffing arrangements on Northern Star were based on her sister’s, and were on the generous side in view of the far higher level of automated control. I was mustered on the 4-8 watch, my area of responsibility being the Main Engine Room, shared with 2 other Junior Engineers on the other watches. Three 5th Engineers looked after the Alternator Room, three 3rd Engineers the Boiler Room and three Refrig. Engineers the Refrigeration and Air Conditioning Plant, all
headed by a 2nd Engineer on each watch. ‘Doc’ Lovett was Senior 2nd. Engineer on my 4 to 8 watch. The Chief Engineer was Mr. Brew, who had sailed for many years in that capacity on Dominion Monarch, and he was supported by the Staff Chief, Jack Warden. There were 4 or 5 Electricians on daywork, and last, but not least our two Apprentices. One being Malcolm Vincent, who I’m very pleased to note has just been elected President of The Institute of Marine Engineering, Science and Technology. (IMarEST).
All went well for a week or so, until two days out from Las Palmas on the afternoon watch.
Until this time we had been running with one oil cooler per engine, but as we headed south, the sea water temperature was gradually increasing, and early in the watch I brought the second coolers for each engine on line to maintain normal oil temperatures. A little later, I was walking along between the two engines when a shower of sparks, just like an oxy-acetylene cutting torch, suddenly shot out of the forward end of the starboard High Pressure Turbine. There were probably some strange noises being generated as well, but they couldn’t be heard over the Gearbox racket. Doc Lovett was standing just a few paces away at the Engine Control panel, enjoying his afternoon mug of tea, when he was rudely interrupted by my agitated shouting and pointing. Doc had a stutter, normally quite minor, but what he was seeing caused the longest “fffffffffffffff----------------ell” he ever uttered! While still only part way through his expletive, Doc grabbed the telegraph and rang ‘Stop’ and we both closed the main ahead steam valve as fast as possible. We also slowed the port engine down to stop the starboard engine rotating.
This done, the Engine Room soon filled with all the Senior Engineers on board, Jack Warden, Mr. Brew, Jack Foreman from Parsons, the engine makers and Shaw Savill’s Senior Engineer Superintendent, Mr. George Jackson. The starboard HP thrust bearing was quickly opened up, to discover that the white metal lining of the pads had virtually vanished, allowing the turbine rotor to move, causing the rotor blades to contact the fixed blades. As soon as what had happened had been established, attention turned to why. Mr. Brew quickly came to the conclusion that Junior Engineer ‘B’ was the cause, by getting air into the oil system when bringing the second cooler into use. I knew this was not the case, but I know others also had their doubts. However there was much work to be done, and this focused everyone’s attention away from me and onto the job. A job that nobody on board had ever done before, and has only been done at sea on very rare occasions.
All the Engineers and Engine Room crew worked 6 hours on and 6 off, to disconnect and isolate the HP turbine and put main steam directly to the LP turbine. My particular job was to blank off all the HP turbine drains, which meant that everyone else was working at various levels above me, and the first thing they all did was to strip lagging from the turbine and pipework. Most of this landed on me, to the extent that I looked like a snowman. After 24 hours of very hard and hot work the starboard engine was restarted and gradually worked up to its reduced maximum power. We soon resumed normal watches and started to get the Engine Room shipshape again.
Two days later, shortly before 0400 I was called for my watch, with`
the news that the port engine had just been stopped. HP Thrust Bearing failure, a carbon copy of the starboard problem. I was probably the only person on board who wasn’t entirely dismayed with the news, at least it pointed to a cause other than Junior Engineer B’s incompetence. We reverted to the 6 hour watch routine, and having gained a bit of experience on how to do the job, we had the port engine turning again in about 18 hours. I think we all did the same jobs as first time, so I got coated with asbestos lagging and became a snowman again. The ship managed a creditable 16 knots running on just the LP Turbine half engines, and so we eventually arrived at Cape Town where the HP turbine rotors were lifted and placed in packing cases, although they stayed on board until arrival at Fremantle.
Here, the rotors were put ashore and flown on ahead to Cockatoo Dockyard, Sydney.
Cockatoo resurfaced the thrust bearing faces and dressed up the damaged blading and gland seals. The Dockyard had done the best possible job, but the rotors looked decidedly second hand when they were returned to the turbine casings. I can’t remember if the original thrust pads were re-lined or whether new units were supplied by Parsons, either way, the same spec. white metal was used again.
The theory as to why the failures had occurred had now moved entirely away from Junior Engineer B’s misdeeds, and now centred on the Thrust Block mounting design. Cockatoo made alterations, to a revised Parson’s design which included replacing the rigid oil pipes with flexible hoses. After several days’ work, everything was boxed up, tested and the voyage to New Zealand continued, now back up to normal speed.
Dick Goodey
Reply With Quote